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1 Introduction

Modern Intel CPUs use a superscalar, out-of-order execu-
tion (OoOE) pipeline that maximizes instruction throughput
through instruction-level parallelism (ILP). A critical com-
ponent affecting system performance is the process in which
µ-ops are mapped to execution ports, which lays at the core
of the ability to perform OoOE. Significant effort has been
undertaken in the attempt to reverse-engineer and model this
process [3, 5, 6].

Our work revisits this question from a security perspective,
focusing on potential vulnerabilities stemming from µ-op port
assignment and execution. Using carefully designed code
gadgets, we expose behaviors that contradict state-of-the-art
models.

A key observation, which underlies our entire work, is that
all proposed models fail to capture significant aspects of µ-op
port assignment and execution. For most Intel architectures
the µ-op port assignment policy exhibits significant irregulari-
ties and dynamics, that are inconsistent with state-of-the-art
models.

In this Work In Progress, we ask: Which undocumented
behaviors in Intel’s port assignment algorithm affect instruc-
tion scheduling? By extending the micro-benchmarks used by
Abel and Reineke, we identify corner cases that strongly de-
viates from the common case, where the CPU adopts at least
three different port assignment strategies. These depend not
only on the instruction and the microarchitectural generation,
but, surprisingly, also on immediate operands.

To make these findings fully accessible, we release an in-
teractive online database showcasing all our experiments and
results: https://uops-again.info/. We envision this re-
source as a long-term reference point for researchers explor-
ing Intel port assignment.
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2 Background

The execution pipeline of modern Intel CPUs is broadly di-
vided into two stages: (i) the front end, which is responsible
for fetching and decoding instructions into micro-operations
(µ-ops), and (ii) the back end, which handles the actual exe-
cution of µ-ops. System performance is critically influenced
by the mapping of µ-ops to execution ports, a process that
constitutes the foundation of effective out-of-order execution.
Intel’s official documentation confirms that its CPU has mul-
tiple execution ports, and describes the functional execution
units found in each port, as well as common representative
instructions related to each execution unit [4]. It does not,
however, describe the port usage of all instructions, nor does
it describe the exact strategy used by the renamer/allocator
to assign µ-ops to ports, especially in the case where two or
more ports with matching execution units are available. To
close this gap, multiple researchers, most notably Abel and
Reineke, published an extensive body of work focused on
reverse engineering the Intel Core and understanding its inter-
nal behavior [1–3]. However, these models focus on common
execution cases, and fail to capture corner cases that may be
exploited in security contexts.

3 Experiments and Contributions

Our microbenchmarks consist of small code blocks compris-
ing an LFENCE instruction, followed by a pair of two other in-
structions. For example, to analyze the “LFENCE; STC; ADD
R64, R64” code block, we invok nanoBench [2] with the
following command:1

sudo ./kernel-nanoBench.sh -no_norm -n_meas 1
-warm_up_count 10
-config configs/cfg_port_0156_only.txt
-asm "LFENCE; STC; ADD RAX, RBX"
-unroll 120

1We use a configuration file cfg_port_0156_only.txt, which only ex-
tracts usage counters of ports 0, 1, 5, and 6.
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Figure 1: Common-case port assignment algorithm, for the
“CBW; CBW” code block (without LFENCE).
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Figure 2: Three different port assignment regions, for the
“LFENCE; CBW; CBW” code block.

We measure the µ-ops dispatched to each port across in-
creasing unroll factors, with unroll values ranging from 100
to 6980, in increments of 20. Each unroll factor is repeated
10 times, and we take the mean and standard deviation of the
µ-ops dispatched to each port.

Our experiments show that Intel’s port assignment policies
can diverge significantly from the well-documented "least-
loaded eligible port" model, illustrated in Figure 1. Using
carefully crafted two-instruction microbenchmarks preceded
by an LFENCE, we consistently observed dynamic scheduling
policies. Instead of a fixed distribution across eligible ports,
the port assignment changes as the unroll factor increases,
producing distinct regions separated by cutoffs. As illustrated
in Figure 2 for the “LFENCE; CBW; CBW” snippet, the port
scheduler employs three different strategies depending on
the number of loop iterations. At lower unroll factors, one
sparsest port is strongly preferred. After a first cutoff, the
allocation becomes approximately uniform across all eligi-
ble ports, albeit noisy. At a second cutoff, the scheduler shifts
again, favoring a different subset of ports. The second cutoff’s
unroll factor is twice the first’s unroll factor. These dynamics
are not isolated: we observed similar cutoff-based transitions
across multiple instructions and instruction pairs, and in some
cases, the behavior also depends on the order of instructions
in the block or on immediate values used in operands. We be-
lieve that this might serve as a new microarchitectural attack
surface which can be harnessed towards implementing, e.g.,

covert channels, fingerprinting, etc. Importantly, the observed
cutoffs are consistent and reproducible across multiple runs,
but differ between CPU generations. These findings show
that static eligibility sets cannot fully describe port assign-
ment. Instead, the allocator follows multiple hidden policies,
switching between them in ways not accounted for by existing
models.

4 Discussion

This work in progress uncovers undocumented irregularities
in Intel’s µ-op scheduling policies. Major open questions
remain: the microarchitectural origin of the observed cut-
off thresholds, and how widespread these corner cases are
across real workloads and CPU generations. Our findings call
for refined models to support better compilers, performance
tools and benchmarks. From a security perspective, this line
of research raises compelling offensive opportunities. Our
observations motivate a focused search for gadgets in real
victim code whose port-assignment behavior might change
with secret-dependent data.
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