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Abstract

Modern processors spend a significant amount of their ex-
ecution cycles waiting on memory. Value-based optimiza-
tions tackle this bottleneck by optimizing for specific memory
content patterns. Zero-store elimination, in particular, skips
memory writes for redundant zero values, reducing memory
pressure and boosting processor performance. We investigate
the state of zero-store elimination in modern Intel processors
and design experiments to reverse engineer its properties. We
identify the conditions that trigger zero-store elimination and
demonstrate how an attacker can selectively induce zero-store
elimination. Similar to previous work on pointer prediction on
Apple silicon, our analysis reveals that zero-store elimination
has severe security implications, reaffirming Intel’s decision
to turn off this optimization via microcode updates. Our anal-
ysis reveals that value-based optimizations extend traditional
side-channel attacker models, exposing partial information
about the processed values (as opposed to just metadata).

This expanded attack surface, created by value-based op-
timizations, breaks constant-time programming techniques,
enabling attacks such as key leakage from Supersingular
Isogeny Key Encapsulation (SIKE). We design a zero-store
elimination-based attack on SIKE that recovers 208 of the
217 bits of the secret key in 3.7 s. Additionally, we provide a
dynamic analysis tool to detect zero-store elimination in pro-
grams and verify that it successfully detects SIKE’s weakness
toward zero-store elimination. We propose mitigations that
allow a tradeoff between security and performance. Our find-
ings caution against the broader implications of value-based
optimizations and urge careful consideration of their security
risks in future processor designs.

1 Introduction

Performance optimization remains an important goal of
modern processor design. A steadily increasing gap be-
tween processor and memory speeds has been known for
decades [16,78] as processors prioritize speed, while memory
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prioritizes capacity. To close this performance gap, processors
implement a wide range of optimizations that aim to keep
memory close to the processor, primarily in various types of
caches. Caches store frequently used values in quick and fast
(cache)memory. Caches have been equipped with additional
optimizations to make them even more performant, such as
dedicated predictors that prefetch data likely to be used [6].
A special, recently implemented class of memory subsystem
optimizations is value-based optimization, which takes the
actual values stored in memory into account.

Zero-store elimination is an undocumented value-based
optimization mechanism implemented on some Intel proces-
sors [68,69]. This optimization leverages the fact that most
workloads do not generate uniformly distributed data, with
zero values being more likely [50, 72]. Therefore, trading off
some implementation complexity can speed up computations
involving zero values in the memory pipeline. Specifically,
zero-store elimination speeds up cases where a zero-value
store overwrites another zero value already in memory. The
processor can track memory locations that are zero and avoid
unnecessary writebacks when memory traverses the memory
pipeline. This saves time when memory is evicted through
the cache levels, reducing memory pressure and improving
performance.

In this paper, we analyze the inner workings of zero-store
elimination. We reverse-engineer the necessary conditions to
trigger zero-store elimination. These conditions include the
size of the stored value and the type of instruction that triggers
the store. We demonstrate that zero-store elimination only
triggers on zero writes of 64 bytes that are cache-line aligned.
Additionally, we demonstrate that zero-store elimination can
be triggered by both vector and non-vector instructions, but
not by non-temporal store instructions. We also reproduce
a previous analysis [68] that locates where zero-store elim-
ination occurs in the memory pipeline and confirm that on
the analyzed processors, the L3 cache is responsible for zero-
store elimination. We analyze the security implications of
zero-store elimination, with their severity confirmed by Intel’s
decision to turn off the optimization entirely via microcode



updates [70]. Additionally, Intel issued a CVE [23] as well
as a security advisory [1] for zero-store elimination. More-
over, we develop tools to triage which microcode version
removes zero-store elimination on which processors. In the
case of zero-store elimination, the Intel security advisory [1]
provides a list of vulnerable microcode versions. However,
this information does not list all microcode versions and their
vulnerability status, which we provide.

Based on our reverse-engineering efforts, we propose an
attacker model for zero-store elimination. Similar to other
powerful software-based attacks based on power measure-
ments [46,51] or ciphertext side channels [48], value-based
optimizations such as zero-store elimination can reveal direct
information about the values a program processes. There-
fore, zero-store elimination exposes an additional attack sur-
face for side-channel attacks, resulting in different require-
ments for implementing cryptographic algorithms. Addition-
ally, zero-store elimination bypasses common assumptions
of software side-channel countermeasures and side-channel
detection tools [24,47,75,76].

We demonstrate that value-based optimization breaks
Supersingular Isogeny Key Encapsulation (SIKE), a previ-
ously considered constant-time cryptographic implementa-
tion. While SIKE is cryptographically broken [17], it illus-
trates the circumstances under which zero-store elimination
can lead to a successful attack. Attacks based on zero-store
elimination can work with a single zero on zero write. Such
zero-on-zero writes can either naturally occur in the program
or be forced by an attacker. Additionally, the size of the store
must be at least 64 bytes to trigger zero-store elimination reli-
ably. The data processed by the SIKE implementation meets
both these requirements. Previous work [28,73] shows similar
attacks on SIKE using (power) side channel attacks. Power
side channels allow an attacker to observe energy differences
induced by computations on zero versus non-zero values. We
demonstrate that attacks on the SIKE implementation are pos-
sible in software and outside the power domain by utilizing
zero-store elimination to compromise the isogeny evaluation
of SIKE’s decapsulation process. Using carefully crafted in-
puts, an attacker can conditionally force long runs of zeroes
to occur during this isogeny evaluation [28,73]. We can make
these long runs observable via the timing difference induced
by zero-store elimination The occurrence of these zero-runs,
and thus the timing difference introduced by zero-store elim-
ination, is key-dependent. Thus, an attacker can recover the
SIKE secret key. We show that the timing difference induced
by zero-store elimination allows leaking 208 of the 217 bits
(95.85 %) of the SIKE key in 3.7 s. The remaining key bits are
recovered using 2° = 512 trial encryptions, which is feasible
even for an attacker with limited resources.

We also provide a dynamic analysis tool to detect potential
zero-store elimination in programs, using an approach simi-
lar to prior side-channel detection approaches [75,76]. Our
tool enables developers to analyze code, such as the SIKE

implementation, for zero-store elimination and to detect side
channels that arise from it. We benchmark our tool against
both a sparse matrix multiplication library [25] and the SIKE
implementation, and find that it can detect potential zero-
store elimination with an average slowdown of 63.64% across
these workloads. Future work could integrate our analysis
approach into well-known frameworks such as DATA [75] or
microwalk [76]. Based on our observations, we propose alter-
native mitigations to turning off zero-store elimination. While
the performance impact of turning off zero-store elimination
is small, our mitigations also apply to other value-based op-
timizations. Our mitigations include selectively turning off
zero-store elimination for critical code segments, as well as
spot fixes that mask critical values to prevent them from trig-
gering zero-store elimination. Additionally, we benchmark
the performance benefit of zero-store elimination using the
SPEC CPU 2017 benchmark suite [21] and find that it yields
a modest average speedup of only 0.27 %. This small perfor-
mance benefit suggests that disabling zero-store elimination
is a feasible option for security-critical applications where
value-based side channels are a concern.

In summary, we analyze the implications of zero-store elim-
ination on side-channel attacks on cryptographic implementa-
tions as an example of value-based optimization. While mod-
ern and older processors have disabled zero-store elimination
via microcode updates, and SIKE as a scheme is cryptographi-
cally broken, we want to highlight the broader implications of
our work. Zero-store elimination is not the only value-based
prediction mechanism; others have already been implemented
in current processor generations [18,27,41,42]. Similarly,
SIKE is not the only scheme where an attacker can force
a specific internal state that leads to faster execution times;
examples of such attacks have existed in the past [2,34] and
will likely occur in the future. Our results can also have a
practical impact if microcode patches are not applied. It also
serves as a general cautionary remark on the potential security
implications of value-based prediction mechanisms.

Contributions. In this paper, we make the following key
contributions:

1. We analyze zero-store elimination on 5 Intel processors.

2. We present an attack on SIKE that exploits zero-store
elimination as a side channel, thereby bypassing classical
constant-time assumptions.

3. We provide an automatic way to detect zero-store elimi-
nation and propose approaches to mitigate it.

Outline. We introduce the required background in Sec-
tion 2. We reverse engineer the parameters of zero-store elim-
ination on 5 Intel processors in Section 3. We perform a case
study on SIKE in Section 4 and outline other potential attack
targets in Section 5. We discuss defenses against zero-store
elimination-based attacks in Section 6 and conclude in Sec-
tion



Availability. We will make our artifacts available at https:
//github.com/cispa/ZeroStore on acceptance of the pa-
per.

2 Background

In this section, we provide background on side-channel at-
tacks, microarchitecture, and the SIKE cryptosystem.

2.1 Side-Channel Attacks

Side-channel attacks are a class of attacks that exploit implicit
information leaked during the operation of a system. Attack-
ers can exploit side-channels at either a software- or hardware-
based level; however, in the remainder of this paper, we fo-
cus on software-based side channels, i.e., side-channels that
are exploited through software. The most common software-
based side channels are timing, control-, and data-flow-based
side channels. These side-channel-based attacks exploit ob-
servable differences in the secret-dependent execution behav-
ior of a program. An example of such observable differences
is variation in execution time, which can be caused either
directly by conditionally executed program paths of different
lengths or indirectly through side effects in the memory hierar-
chy, i.e., cached and uncached code paths, or through variable-
time instructions. Side-channel leakage can be mitigated by
ensuring that execution time and memory-access patterns are
independent of secret data, as well as by preventing secret data
from being processed by variable-time instructions. Constant-
time programming techniques [60] achieve this by eliminating
secret-dependent branches, data-dependent memory accesses,
and other leaky instructions with confidential inputs. While
the underlying leakage source, cache, or instruction-based tim-
ing differences still exist, constant-time programming meth-
ods stop secret-dependent leakage. Although constant-time
programming itself is fragile to implement and test [32,40,63],
it can mitigate most currently known side channels if applied
correctly.

However, side channels caused by value-based optimiza-
tion, such as zero-store elimination, are not mitigated by
constant-time programming. Even if the control and data flow
of a program is linearized, making the program constant time,
value-based side channels can still leak information about the
secret values [18,41]. Therefore, the attacker model behind
side channels with value-based optimizations is more akin
to power side channels [45] or ciphertext side-channel-based
attacker models [49] and requires countermeasures such as
masking [56,77] to be mitigated.

2.2 Microarchitecture

Microarchitecture refers to the internal implementation of a
processor’s abstract specification, known as the instruction

set architecture (ISA). While the ISA specifies the behav-
ior of the instructions executed by a processor and their in-
teractions, the microarchitecture is a specific instantiation
of the ISA. Multiple microarchitectures can implement the
same ISA, and architecturally, they should behave equiva-
lently for all architecturally defined behaviors. However, as
the microarchitecture is also responsible for making the pro-
cessor fast and efficient, it can introduce side effects that can
be observed and exploited by an attacker. While there are
instances where microarchitectural attacks become architec-
turally visible [10, 80], they are typically only visible via
timing differences. While the lack of timing differences is not
mandated by the ISA (and doing so would make many imple-
mentations infeasible), they are still exploitable by attackers.
Previous attacks have used them to leak information about se-
cret values in cryptographic implementations [8, 13,30,55,82]
as well as confidential informatinon contained in the memory
of a system [10, 15,43,49,52,64,79].

2.3 SIKE Cryptosystem

Supersingular Isogeny Key Encapsulation (SIKE) is a post-
quantum key encapsulation mechanism built on the mathemat-
ics of elliptic curves, and isogenies [4]. In SIKE, each super-
singular elliptic curve acts as a point in a big, structured graph.
Special maps called isogenies correspond to edges between
these points. SIKE’s security relies on the difficulty of revers-
ing a random walk in the isogeny graph. Even with quantum
computers, an attacker cannot feasibly recover the secret path
between two given points. SIKE offered small key sizes and
reached the finals of the NIST Post-Quantum Cryptography
competition, but researchers later broke its security, leading to
its withdrawal [17]. It operates analogously to Diffie-Hellman
key exchange: each party uses a secret scalar to compute an
isogeny from a shared base curve to a new curve, resulting
in a shared key derived from the resulting elliptic curve’s j-
invariant. A detailed description can be found in Costello et al.
[22], and a broader survey of isogeny-based cryptography is
provided by De Feo et al. [26]. In the protocol, Alice chooses
a secret integer k4 and uses it to define an isogeny ¢4 that
maps the base curve E to a new curve E4. Her public key
consists of (E4,94(Pp),d4(0Bp)), where (Pp,Qp) are fixed
public basis points used by Bob. Bob performs a symmetric
operation to generate his key. After the exchange of public
keys, each party recomputes a new isogeny using their secret
and the other party’s public data. For example, Alice forms
a secret subgroup by computing S;; = ¢p(Pa)+ [kalpp(Qa)
and derives an isogeny from this kernel, resulting in a final
curve E4p. Bob performs the analogous computation to obtain
Epa, and both derive the shared secret from the j-invariant of
their respective curves, which are isomorphic. Crucially, the
process involves mixing the party’s secret with public inputs
controlled by the other party: the scalar multiplication step
that computes S’, (and likewise S7) interleaves secret data
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Figure 1: A hypothesis of how zero-store elimination works
and why it introduces timing differences. Both cases depict a
store of zero value; however, the cache state differs in each
case. In the first case, the cache tracks that a non-zero value
has been stored in it beforehand, as indicated by the value of
the variable. Therefore the processor has to overwrite
the value stored in the L3 in the process updating the flag
variable. In case the processor already tacks a value in
the cache, the cache line can be dropped without a writeback
to the L3, which is faster. The presence of such a silent dis-
card is hinted at by the 12_lines_out.silent performance
counter event.

with potentially adversarial input. This structural property
makes SIKE particularly sensitive to side-channel leakage. If
an attacker can influence the public key and observe timing or
power behavior during isogeny or scalar computations, they
may be able to extract information about the secret scalar.
Previous side-channel attacks exploited this dependency by
providing specially crafted adversarial inputs [28,73].

3 Demystifying Zero-Store Elimination

In this section, we analyze the inner workings of zero-store
elimination on 5 Intel processors. Firstly, we hypothesize
how zero-store elimination works in Section 3.1. We ana-
lyze the parameters of zero-store elimination in Section

We analyze the timing difference introduced by zero-store
elimination, the location in the memory hierarchy where zero-
store elimination is triggered, and the minimum store size
required to trigger zero-store elimination. Additionally, we
triage which microcode versions are affected by zero-store
elimination in Section 3.3. We show that, given the correct mi-
crocode version, zero-store elimination is present on 12 gen-
eration Alder Lake (i9-12900K), 117" generation Tiger Lake
(i7-1185G7), and 10" generation Ice Lake (i3-1005G1) Intel
processors. We find that while the Intel security advisory on
zero-store elimination [1] lists the i3-1005G1 and i7-1185G7
processors as vulnerable, it does not list the 19-12900K pro-
cessor. Finally, we devise 2 generic ways to exploit zero-store
elimination in Section

3.1 Zero-store Elimination a Hypothesis

We hypothesize that zero-store elimination works as illus-
trated in Figure |. Processors that implement zero-store elim-
ination must check for zero values somewhere in the memory
hierarchy. Our experiments show that this check is performed
upon data entering the L3 cache, if a zero value is already
present in the cache line that is about to be written. We assume
that tracking zero values is achieved through an additional flag,
in our case per cache line, that indicates whether the cache line
contains zero values. In case zero on zero writes occur they
can be silently discarded as they have no impact on the cache
state. This is also hinted at by the 12_lines_out.silent
performance counter event. As documented by Intel, this event
documents the number of cache lines that are silently dropped
by the L2 cache, i.e., , due to zero store elimination.

3.2 Microbenchmarks on Zero-Store Elimina-
tion

We perform a series of experiments on 5 Intel processors
(i3-1005G1, 19-12900K, i7-1185G7, 19-13900K, i7-11700) to
determine the parameters of zero-store elimination. Among
these parameters are the size of the timing difference intro-
duced by zero-store elimination, the location in the memory
hierarchy where zero-store elimination is triggered, the mini-
mum and maximum store size, and the alignment required to
trigger zero-store elimination. To ensure that we measure the
effect of zero-store elimination as precisely as possible, we
disable prefetching, pin our process to a single core, set the
processor frequency, and disable Intel Turbo Boost. For pro-
cessors that contain efficiency and performance cores, we test
both core types. In our tests, we observe that on the i7-1185G7
processor, which has both performance and efficiency cores,
zero-store elimination is only present on the performance
cores. This behavior is likely due to the microarchitecture
differences between performance and efficiency cores.
Location of Zero-Store Elimination in the Memory Hier-
archy. We reproduce an experiment from previous work [68]
to determine which part of the memory hierarchy performs
zero-store elimination. The memory hierarchy of modern Intel
processors comprises multiple levels of data and instruction
caches with ascending sizes and decreasing speeds. All pro-
cessors we test contain three levels of caches before the main
memory, namely L1, L2, and L3 (also referred to as LLC)
caches. We list the size of these caches in Table

We perform stores of increasing sizes and flush the target
memory range of the stores using the cl1flush instruction.
We then measure the time it takes for the flush operation
to complete for any given size and calculate the memory
throughput of flushing the cache. Our experiment forces val-
ues through all successive cache levels, allowing us to observe
potential timing differences between storing zero and non-
zero values. If we see that the memory throughput for flushing



the cache between storing zero and non-zero values changes
at a specific memory size, we can infer that stores are elimi-
nated upon entering the L3 cache level fitting our hypothesis
illustrated in Figure |. We illustrate the results of this experi-
ment in Figure 3, where the experiment was performed on the
13-1005G1 processor. Zero-store elimination becomes active
when our memory store operations become bigger than the L2
cache size, forcing memory into the L3 cache. We see this in
the timing difference between zero and non zero stores starts
to occur at 2'° B (=512kB) in Figure 3 which is at the limit
of the L2 cache size of the i3-1005G1 processor listed in Ta-
ble 1. Thus, in the L1 and L2 cache, no zero-store elimination
occurs. Additionally, we track the 12_lines_out.silent
performance counter, which tracks the number of cache lines
that are discarded silently from the L2 cache. We observe
that this counter aligns with the timing difference induced by
zero store elimination. As we want to build attacks based on
zero store elimination and unprivileged attackers generally
cannot read arbitrary performance counters [37], we focus
on timing differences. We obtain comparable results on all
tested processors listed in Table |. Here, the timing difference
becomes observable at a different memory size; however, the
memory size where zero-store elimination becomes visible
always closely matches the cache size of the L3 cache. We
therefore conclude that zero-store elimination must happen
on the transition between the L2 and L3 cache. For even
larger stores, the main memory becomes the bottleneck for
store throughput, which is observable by the timing difference
between zero and non-zero stores becoming smaller at 272
bytes. These results align with previous work on zero-store
elimination [68].

Observable Timing Difference. The timing difference in-
troduced by zero-store elimination is important from a per-
formance perspective, as it determines the speedup gained by
zero-store elimination. The timing difference is also important
from an attacker’s perspective, as higher timing differences
lead to measurements that are distinguished more easily and,
therefore, to attacks that require fewer measurements. Ad-
ditionally, high timing differences enable attacks using low-
resolution timers, such as those present in browsers [57,65].
In the following, we experimentally evaluate the timing dif-
ferences introduced by zero-store elimination. For this, we
use the following setup, also illustrated in Listing |. We first
initialize a target cache line by overwriting it with zero values
and making sure that it is marked as unmodified using the
clflush instruction. Next, we perform a trigger store that
overwrites our zeroed target cache line. Finally, we measure
the time it takes to perform a second clflush operation on
the target cache line. Upon performing this flush operation,
the processor must normally perform a writeback to mem-
ory, as we have just performed a store on the target cache
line. We perform this experiment with two different mem-
ory contents for the trigger store, overwriting the zero-valued
target cache line with zero and non-zero values. In the case

memset(target,®,STORE_SIZE); // Set cacheline to zero
flush(target); // Prime cache
if(set_nonzero){ // Selectively set to one
memset (target,®xff, STORE_SIZE);
}else{
memset (target,0x00,STORE_SIZE);
}
start = rdtscQ);
flush(target) // Trigger
10 end = rdtsc(Q);
11 delta = end-start
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Listing 1: The setup used in our tests for zero-store elimina-
tion. We first zero a cache line and flush it. Then we selec-
tively set the cache line to zero or non-zero value and flush it
again. The timing of the flush instruction reveals if zero-store
elimination occured.
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Figure 2: Average execution time of flushing a zero value to a
and a memory region for all tested processors.

of the zero-on-zero write, zero-store elimination is triggered,
eliminating the writeback to memory when we measure the
execution time of the second c1flush operation. The timing
difference introduced by zero-store elimination is the differ-
ence between the execution times measured in the last step
of the two experiments. We list the results of our measure-
ments in Figure 2. We observe timing differences from 38
(13-1005GT1) to 228 (i7-1185G7) cycles. Such high timing
differences are, theoretically, even measurable with coarse-
grained timers in constrained environments [65]. However, we
leave experiments that show concrete examples of zero-store
elimination-based attacks in constrained environments to fu-
ture work. We do not observe zero-store elimination on the
19-13900K and i7-11700 processors. Concluding our experi-
ments, we find that a simple threshold-based distinguisher can
detect zero-store elimination on the i3-1005G1, i9-12900K,
and 17-1185G7 processors with F1 scores of 0.998, 0.999, and
0.999, respectively.

Minimum Store Size. We further analyze how the size of
a store operation influences zero-store elimination. In all
previous experiments, we successfully triggered zero-store
elimination by storing at least 64 consecutive 64-byte-aligned
zero bytes. We design an experiment to determine if there are
any smaller stores that can trigger zero-store elimination. The
experiment first sets a cache line to an all-one value (i.e., all
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Figure 3: Average execution time (scatterplot) of flushing
a and a value across different store sizes
measured on the i3-1005G1 processor. Timing differences
only become visible at ~ 2'° B when stores of these enter the
L3 cache. The 12_lines_out.silent performance counter
(lineplot) alligns with the timing difference induced by zero-
store elimination.

bytes 0x£ff), which avoids triggering zero-store elimination.
Then our experiment uses bytewise writes to set between 1
and 64 bytes of the cache line to zero. A first flush primes the
zero store mechanism of the cache. We then bring the 64-byte
line into the cache without modifying its value by accessing it
and rewriting it with the same value it had before. Lastly, we
measure the timing of a c1flush instruction to the cache line
to determine if zero-store elimination occurred. We repeat
our experiment 10 000 000 times on the i3-1005G1 processor.
Our results for the experiment are illustrated in Figure 4. The
memory region size at which we observe a timing difference
is 64 bytes of consecutive zeros, which is the size of a single
cache line. This is consistent on all tested systems where
zero-store elimination is active. These observations support
our hypothesis, as illustrated in Figure |, where one bit per
cache line is required to store whether the line is zero. This is
in contrast to previous work where it was hypothesized that
zero-store elimination can be triggered by smaller stores [10],
we were not able to observe this behavior with our testing
setup on any of the tested machines.

Type of Store instruction. We additionally analyze if the
type of store instruction, i.e., the size of the store and whether
it is a non-temporal store, influences zero-store elimination.

Table 1: Cache size and parch of all tested cores.

Core parch Cache Size

L1 L2 L3
i3-1005G1 Ice Lake 48kB 512kB  4MB
i7-11700  Rocket Lake 48kB 512kB 16 MB

i7-1185G7 Alder Lake 48kB 1280kB 12MB
19-12900K Tiger Lake 48kB 1280kB 30MB
19-13900K Raptor Lake 48kB 2048kB 36 MB
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Figure 4: Time to flush a anda memory region
for store sizes from 1 to 64 bytes on i3-1005G1. Zero-store
elimination becomes active at 64 bytes (cache-line granular-

ity).
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Figure 5: Time to flush a 64 byte and a mem-
ory region with 1 byte disalignments on i3-1005G1. Only
cache-line-aligned stores are eliminated.

For this experiment, we store one 4 kB memory page filled
with zero values and one page filled with non-zero values to
a previously zeroed memory region. We perform this 4 kB
store using instructions that store different sizes, i.e., 8, 16,
32, 64, 128, 256, and 512 bytes. For the 64, 128, 256, and
512 Byte store sizes, we also test non-temporal store opera-
tions. Our testing setup is similar to the one used in Listing 1.
Our experimental results show that store operations are elimi-
nated, independent of operand width, as long as the memory
region to which they store is large enough. An exception
is non-temporal stores, which are never eliminated. We hy-
pothesize that non-temporal stores bypass the cache, which is
responsible for zero-store elimination.

Store Alignment. Lastly, we aim to determine whether zero-
store elimination occurs for 64-byte memory that crosses
cache line boundaries. For this, we misalign a 64-byte byte-
wise store operation by offsetting it in one cache line. As the
store is 64-byte offsetting, it forces it to cross the cache line
boundary because a single cache line is only 64 bytes big.
The remaining measurement setup is identical to the previ-
ous experiments. We illustrate the results of this experiment
in Figure 5. The plot illustrates that only cache-line-aligned
stores (offsets of 0 and 64 bytes) are eliminated by zero-
store elimination. This observation supports our hypothesis
from Figure | that stores are tracked per cache line.



3.3 Affected Microcode Releases

Finally, we test which microcode versions are affected by
zero-store elimination. Microcode allows the update of func-
tionalities of an already shipped processor and can sometimes
be used to patch critical security vulnerabilities in a proces-
sor [9]. Intel provides a repository that collects all microcode
releases.” Using these publicly available microcode releases,
we develop a microcode test triager. Our microcode triager is
a small program that installs a cron job to reboot the system.
On each reboot, the triager installs a different microcode ver-
sion and reboots the system again. Experimental results are
collected locally in files on the system. For each microcode
release, the tool executes a callback function. We use this
callback to run our zero-store-elimination detection tool. We
publish our triager as open source software.

We illustrate the results of this experiment in Figure
While we observe that microcode patches are disabling zero-
store elimination on all processors that support it, we also
notice that this occurred at different timestamps. The fact
that Intel turned off zero-store elimination is in line with
documentation from other sources [70]. On the 19-12900K, we
see that the default microcode version contained in the BIOS
differs from all publicly available microcode versions and
is additionally affected by zero-store elimination. Although
Intel launched the 19-12900K processor in the 4th quarter of
2021 (i.e., after zero-store elimination was patched on the i3-
1005G1 and 17-1185G7 processors), they only turned off zero-
store elimination in release 220510, leaving an unexpected
wide vulnerability window. Lastly, even if microcode updates
are available, this does not mean that they are applied. As the
operating system is responsible for applying such microcode
updates, systems could stay vulnerable for extended periods.

3.4 Exploitability of Zero-Store Elimination

In this section, we propose two generic methods for exploiting
zero-store elimination. A passive attacker relies on the victim
to trigger zero-store elimination, whereas an active attacker
attempts to trigger it selectively.

Passive Attacker. A passive attacker can observe the timing
difference introduced by zero-store elimination. The victim
program induces the timing difference when it self-evicts
a previously zeroed memory region. This also requires the
victim to self-overwrite this memory region with zero val-
ues, before the memory is evicted. This attacker model is
very similar to a remote timing attacker [8, 12, 14, 44], where
the attacker uses the victim program’s memory accesses to
self-evict values from the cache. Therefore, this model has
the benefit of being easily transferable to remote scenarios.
Furthermore, this attacker model is similar to previous work

1 https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files
thtps://www.intelAcom/content/www/ us/en/products/sku/134599/intel-
core-1912900k-processor-30m-cache-up-to-5-20-ghz/specifications.html

on frequency scaling-based power side channels, such as
Hertzbleed [73,74], which were also utilized in remote set-
tings.

Active Attacker. In cases where the victim program does not
self-evict the target cache line, a passive attacker cannot ob-
serve a timing difference due to zero-store elimination. Here,
an active attacker is required to make the timing difference of
zero-store elimination visible by forcing a writeback to mem-
ory. An active attacker first waits for the victim to overwrite
zero values with zero values, setting up the requirements for
zero-store elimination. Afterwards, the active attacker evicts
the cache line and observes the timing difference induced
by zero-store elimination. Such an active attacker model is
more powerful as it does not require the victim to self-evict
to trigger zero-store elimination. However, it requires the
attacker to have some control over the victim program’s mem-
ory. Namely, the attacker requires some knowledge about
the victim’s memory layout to use Prime+Probe [54] based
techniques to force writeback from the cache. For this, the
attacker requires code execution or adequate gadgets on the
victim system to force cache evictions; therefore, such active
attacks do not easily transfer to remote scenarios.

4 An Attack on SIKE with Zero-Store Elimi-
nation

In this section, we demonstrate that the value-based leak-
age introduced by zero-store elimination can be exploited
in a practical scenario. As an attack target, we choose the
reference implementation of the Supersingular Isogeny Key
Encapsulation (SIKE) [4]. While SIKE is mathematically
broken [17], its code has been widely audited against side-
channel attacks, and it serves as a great example for the attack
primitive that zero-store elimination introduces. We first dis-
cuss the threat model and setup of our attack, then illustrate
how to trigger and observe zero-store elimination in the SIKE
implementation, and lastly discuss recovering the SIKE key
from the side-channel observations.

Threat Model and Setup. We assume a side-channel at-
tacker model where the attacker and the victim run on the
same machine, but the attacker does not have physical access
to the machine. While a minimal attacker could use eviction-
based strategies similar to Prime+Probe [54] to trigger and
observe zero-store elimination, we use the c1flush instruc-
tion instead. Since targeted flushing requires the memory
to be shared between the victim and the attacker, we mod-
ify the SIKE implementation slightly so that this is the case
for our target address. We never read from or write to that
shared memory and leak the SIKE encapsulation key only via
side-channel information. We attack a static key version of
SIKE with 217-bit secret keys. Therefore, the attacker gains
the ability to observe multiple decapsulation processes un-
der the same key. Similar to previous papers, we attack a
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Figure 6: Heatmap of microcode releases affected by zero-store elimination on i3-1005G1, i7-1185G7, i7-11700, i9-12900K,
and 19-13900K. Cells illustrate that a microcode version is or by zero-store elimination. Empty cells do

not support the microcode release for the processor.

side-channel-hardened version of SIKE [5]. We perform our
attack on two different Intel processors, an i3-1005G1 and an
19-12900K, showing that the attack is not specific to a single
microarchitecture.

Triggering Zero-store Elimination in SIKE We attack
the isogeny evaluation during SIKE’s decapsulation process.
While other attack points, such as curve point multiplication,
exist in SIKE, previous work has shown that the isogeny
evaluation step is the most vulnerable to side-channel at-
tacks [28]. In the following, we define the target’s secret
key as sk = skoj¢, ..., Sko, where each sk, is a single bit of the
key. Using the method described in previous works [28], we
can force zero values into the isogeny evaluation if the value
of a single key bit sk, equals zero. This is possible, for all sk,
with 0 < x <208, if we know all previous bits sk, with y < x.

Specifically, our attack targets the intermediate variable
f2elem_t R->X, whichis a 112 B large memory region. Us-
ing methods described in previous work [28], we can force
Zero on zero writes to occur on this variable, dependent on
a single key bit sk,. We refer to such a write as the critical
write and illustrate it in Listing |. This critical write triggers
zero-store elimination, resulting in a timing difference when
the variable is written back to memory, as detailed in Sec-
tion . Therefore, we can force zero-store elimination to
occur on f2elem_t R->X during the isogeny evaluation, in
direct correlation with the value of a single key bit sk,.

To ensure that zero-store elimination is triggered, our at-
tack must ensure that the cache lines corresponding to the
variable f2elem_t R->X remain unmodified before the crit-
ical write occurs. In our experiments, we ensure this by in-
serting a c1flush instruction into the SIKE implementation
as illustrated in Listing 2. However, an attacker could also
use an eviction-based strategy to ensure that this condition
holds, with similar reliability, but at the cost of additional
implementation complexity [11,61,71]. We use the c1flush
instruction to simplify our experiment. Even though we use
the c1flush instruction, classical cache attacks based on it,
such as Flush+Reload, would not yield the same information
as our zero-store elimination-based attack. In our case, SIKE
always accesses the same memory region, and we can only
distinguish a zero from a non-zero value, which is not pos-

sible with a classical cache attack that targets differences in
access patterns.

Recovering the SIKE Key For the concrete attack, we leak
each bit sk, separately, starting at the least-significant bit.
Therefore, for each bit sk, we know all previous bits sk, with
0 <y < x, as required by the method we use to force key-
dependent zeros. Using said method, we generate a malicious
public key that forces the critical write to occur on f2elem_t
R->X, if sk, is zero. Next, we execute the decapsulation pro-
cess with our crafted input, which invokes the isogeny eval-
uation as shown in Listing 2. To observe whether zero-store
elimination was triggered on f2elem_t R->X, we measure
the execution of clflush(R->X), after the decapsulation
computation finishes. If zero-store elimination was triggered,
the flush executes faster than normal since no write-back
to memory needs to be performed. Therefore, we conclude
that sk, equals O if the execution time of c1flush(R->X) is
below a certain threshold. Otherwise, we conclude that sk,
equals 1. By repeating this procedure, we can iteratively leak
all secret key bits up to skpog.

Due to the difficulty of determining a perfect threshold, we
may misclassify a few 0 bits as 1. To counter such errors, we
use the fact that we can only force zero values depending
on sky, if all sk, with 0 <y < x are known [28]. Therefore,
we cannot force any more zero values after misclassifying
a key bit. Consequently, we classify all bits as 1, after hav-
ing misclassified a single bit. Statistically, it is unlikely to
have 20 consecutive 1 bits in the secret key. Therefore, we
reset our attack code once we observe such a sequence in our
classification.

Results. We can reliably leak the 208 least significant bits of
the 217 bit SIKE key. The remaining 9 bits need to be brute
forced, which requires 512 tries and is thus clearly feasible,
as the position of the unknown bits is fixed and known. On
the 13-1005G1, we can reliably leak the 208 least significant
bits with a little more than 5 measurements per bit. On the
19-12900K, we can reliably leak the 208 least significant bits
within an average of 3.7634 seconds (n = 105, o = 0.0665),
requiring a little more than 1 measurement per leaked bit.
Our attack is successful in 99.756 % of the cases (n = 10°).



f2elm_t R->X;
for (r=1; r<max_r; r++) {
fp2copy (pts[npts-1]->X, R->X);

1
2
3
4
5
6

) .

Listing 1: Snippet from the SIKE isogeny evaluation
attacked in our case study.

1 f2elm_t R->X;

2 for (r=1; r<max_r; r++) {

3 clflush(R->X)

4 fp2copy (pts[npts-1]->X, R->X);
5 e

6

}

Listing 2: Snippet with added clflush instruction to
ensure that zero-store elimination is triggered.

We illustrate an example leakage trace on the i9-12900K
in Figure

S Other Potential Attacks using Zero-Store
Elimination

In this section, we describe two other potential attacks pos-
sible with zero-store elimination. First, related to SIKE and
zero-point attacks on elliptic curves, we discuss how zero-
store elimination could be utilized to perform zero-point at-
tacks on elliptic curves from a software scenario. Second, we
devise an attack on RSA decryption, showing that a constant-
time square-and-always-multiply implementation can be at-
tacked using zero-store elimination.

Zero Point Attacks on Elliptic Curves. In elliptic-curve
cryptography, one of the central operations is scalar multi-
plication of a curve point denoted [#]P, where P is a curve
point and 7 is a scalar value. The scalar value n serves as the
secret key in cryptosystems such as ECDSA. The scalar mul-
tiplication of curve points is often implemented similarly to
the classical square-and-multiply implementation for binary
exponentiation. The pseudocode for such an implementation
is outlined in Algorithm I. So-called zero-point attacks first
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Figure 7: A zero-store elimination SIKE on an
19-12900K. A [{ie=i0 [l value of 1045 recovers 208 bits of
the SIKE encapsulation key correctly.

Algorithm 1: Left-to-right binary multiplication on
elliptic curves using side-channel resistant double-
and-add-always, as decribed by Coron [20]

Data: P an elliptic curve point, and a positive integer
in binary notation e = (e, €;-1,...,€1,€0)2
Result: [e¢]P
Qo < P;
fori=t—0do
Qo < [2]1Qo;
01— Qo+P;
Qo <« £2e5
end
return Qo;

discussed by Akishita et al. [2] exploit the fact that for an
attacker-chosen index i the attacker can provide a cipher-
text that leads to a zero curve point when bit »; is processed.
Additionally, recent work analyzed a wide range of elliptic
curves and potential implementations for their susceptibility
to zero-point attacks [67]. The fact that a fully zero curve
point is processed can be observed when the curve points
are sufficiently large. This is, e.g., , the case if curves such
as sect571k1 with bit sizes of 571 are used. We leave an
implementation of the attack open for future work.

Store Elimination Attacks on RSA. Similarly, the key op-
eration in the RSA cryptosystem is modular exponentiation.
During the decryption process, this occurs in the form ¢
mod N, where c is an attacker-controlled ciphertext, d is the
secret decryption key, and N is the publicly known modu-
lus. Our proposed attack works on a decryption oracle, i.e.,
a program where the attacker can decrypt arbitrary cipher-
texts under a static key. We target a side-channel hardened
multiply-always exponentiation algorithm outlined in Algo-
rithm 2. While this algorithm does not expose any control-
or data-flow leakage, an attacker can observe the number of
leading zeroes in the intermediate variable R in every loop
operation due to zero-store elimination. We also assume that
Ry is misaligned, such that m bits of R are in the same cache
line, and the rest of the cache line is always zero. An attacker
can then determine if the leading bits of Ry are zero by ob-
serving the timing difference of the store operation. As only
m bits of Ry are contained in the same cache line, the attacker
can brute force a ciphertext where zero-store elimination is
triggered in 2™ tries. The effectiveness of our attack is deter-
mined by how well an attacker can misalign the intermediate
value Ry. Future work could explore whether lifting the mis-
alignment assumption is possible. It is conceivable that the
mathematical structure of the decryption operation allows for
forcing small intermediate values in arbitrary positions given
control over the ciphertext c.



6 Defending Against Zero-Store Elimination
Attacks

In this section, we show how to defend against zero-store
elimination attacks. First, we provide a tool based on Intel
Pin [38] to detect where zero-store elimination can happen in
a given binary. Second, we show how to perform spot fixes in
critical code sections to avoid zero-store elimination, and how
a system-wide mitigation could selectively disable zero-store
elimination.

6.1 Detecting Code Vulnerable to Zero-Store
Elimination

Intel Pin [38] is a dynamic binary instrumentation framework
that allows writing instrumentation passes for binary code. We
provide a Pin-tool plugin that intercepts store operations in a
binary and detects potential zero-store elimination. Our pin-
tool is similar to tools that check if binaries are constant-time
before running them [75,76]. The tool works by instrumenting
all store operations in a binary and checking if the value to be
stored is zero and the store location is also zero. Additionally,
we check if the stored block is cache-line aligned.

We evaluate our Pin plugin on the CSparse demo programs
of the SuiteSparse [25] sparse matrix operation suite. As
sparse matrix operations inherently process a large number
of zero values, they are an ideal benchmark target for our
dynamic binary instrumentation approach. We execute the
benchmark on a single core with otherwise default parameters
on an Intel Xeon Gold 6346 processor. On average, the bench-
mark runs for 62.88 s with, and for 2.01 s without our Pin
plugin. Therefore, our Pin plugin induces a 31.28x slowdown.
We observe that zero-store elimination is triggered during the
benchmark in 2631 cases.

We also evaluate the plugin on the SIKE implementation,
once while executing with random values and once while forc-
ing zero values, as presented in our attack in Section 4. We
detect zero-store elimination in 360 cases when forcing zero

Algorithm 2: Left-to-right Multiply Always Expo-
nentiation as described by Clavier et al. [19]

Data: g,n € G where G is a multiplicative group, and a
positive integer in binary notation
e=(ene—1,...,e1,€0)2

Result: ¢g" mod n

Ry—1;Ri—myi—k—-1;t«0;

while i > 0 do

RO — R() ~Rt mod n;
r—tde;;
i—i—-1+t;

end

return Ry;
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values and in 274 cases when not The residual 274 times zero-
store elimination occurs independently of any key-related
information and can be explained by the basic operation of
SIKE. When executed without our plugin, the attack on the
SIKE implementation terminates in 0.02 s. With our pintool
it executes in 1.92s; therefore, our pintool induces a 96x
slowdown. Therefore, it can be used similarly to previous
Pin-based analysis passes to check binaries for constant-time
implementation [75,76]. We leave an extensive analysis of
cryptographic libraries to future work, as such an analysis
also requires complex input generation that triggers zero in-
termediate states in the tested algorithms. As indicated by
previous work [31], dynamic approaches do not provide for-
mal guarantees. However, given that the internal workings
of zero-store elimination are not precisely known and can
change with every processor generation or even microcode
updates, obtaining formal guarantees would likely require a
coarse overapproximation to be useful.

6.2 Mitigating Zero-Store Elimination Based
Attacks

We propose multiple ways to mitigate attacks based on zero-
store elimination. While we benchmark the performance im-
pact of turning off zero-store elimination entirely, we also pro-
pose alternative mitigation strategies for further exploration
in future work.

Turning off Zero-Store Elimination. The most radical way
to mitigate zero-store elimination attacks is to turn off the
optimization entirely. Intel has taken this way in the past via
microcode updates [70]. While this mitigation is effective,
it also comes with a performance penalty. The performance
penalty of turning off zero-store elimination on the SPEC
CPU 2017 Intspeed benchmark [21] is illustrated in Figure
The performance penalty is comparatively small with 0.27 %
on average. However, for some applications that process a
large amount of zero data, performance penalties are likely
to be higher. The lowest overhead is measured for the xz
file compression benchmark with 0.16 %, while the highest
overhead is measured for the gcc compilation benchmark
with 0.74 %. Overall, the overhead of turning off zero-store
elimination is small.

Selectively Turning Off Zero-Store Elimination. Instead
of completely removing zero-store elimination, another ap-
proach is to deactivate it only when critical data is pro-
cessed. Such defenses have been shown to be effective against
prefetching-based side channels [62]. Implementing such a
defense means that non-security-critical code can still ben-
efit from the performance benefits that zero-store elimina-
tion offers, while critical data remains protected. To realize
this approach, we suggest adding a model-specific register
(MSR) that turns off zero-store elimination. If a certain bit
in the MSR is set, the processor does not allow zero-store
elimination. Such MSRs already exist for similar value-based



prediction mechanisms [3,39]. A developer can then use two
system calls to set the MSR before every critical code section
and reset it afterwards.

Spot Fixes. A simple spot fix for critical code sections can be
to add a dummy store operation that writes a non-zero value
to the memory location. This way, the zero-store elimination
optimization is not triggered, and the side channel is mitigated.
This mitigation is straightforward to implement and can be
applied in a targeted manner to critical code sections. Such
a mitigation, in the form of a C preprocessor macro, is illus-
trated in Listing 2. Instead of doing a direct store operation, a
macro is used to overwrite the memory location with a non-
zero value. This way, the zero-store elimination optimization
is not triggered, and the side channel is mitigated. Similar
mitigations could be integrated into other places where secret
values are stored. Alternatively, a compiler extension could
mask every critical store, similar to mitigations such as Ci-
pherfix [77]. By XORing data with a pseudorandom stream on
store and load, long runs of zero values that trigger zero-store
elimination are prevented, similar to memory scrambling [7].

In-cache Computations. As determined by previous re-
search [68] and validated by our experiments in Section 0,
zero-store elimination is only active after the L3 cache level.
Therefore, a simple way to mitigate zero-store elimination
is to keep critical data in the L1 or L2 cache, to ensure that
an attacker cannot evict it. One possibility is memoryless
encryption, where secrets are stored in registers instead of
memory and never leave the registers [29, 58]. To prevent
cases in which an attacker evicts values from the cache to trig-
ger zero-store elimination, a partitioned cache can be utilized.
This way, the attacker and victim do not share cache lines and,
therefore, an attacker cannot, via flush instructions or cache
eviction, remove cache lines of the victim from the cache.
Therefore, the only risk in such a scenario is self-eviction
of zero values by the victim, which could be prevented by
careful program design. Partitioning the cache is possible via
hardware mechanisms such as Intel CAT [36] or by using
cache coloring mechanisms [35]. Intel CAT is a hardware
mechanism that allows the partitioning of the L3 cache and
has been proposed to mitigate cache-based attacks in previ-
ous work [53]. Previously it has been shown that Intel CAT
cannot entirely prevent cache attacks, attack on the cache di-
rectory still remain possible because it is not partitioned by
Intel CAT [59]. Therefore, the ability of Intel CAT to protect
against zero-store elimination attacks depends on the exact
point at which zero-store elimination is applied in the memory
hierarchy and whether partitioning is possible at this point.
Cache coloring works without dedicated hardware features by
choosing physical addresses that map to specific cache sets or
slices [33,66,81], separating them between different security
domains. However, both Intel CAT and cache coloring reduce
the cache size and, therefore, induce additional performance
penalties.
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| #define MEMSET(b,c,len) \
2 memset(b,0xff,len); \
3 mfence(); \

4 memset(b,c,len);

Listing 2: A C preprocessor macro that adds a dummy store
operation to a critical code section, preventing zero-store
elimination.
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Figure 8: Performance penalty of turning off zero-store elim-
ination on the SPEC CPU 2017 Intspeed benchmark. Dis-
abling zero-store elimination leads to an median performance
penalty of 0.8 % and average performance penalty of 0.27 %.

7 Conclusion

In this paper, we investigated the zero-store elimination mech-
anism via a series of microarchitectural experiments. We
evaluated the store sizes at which zero-store elimination is
triggered, the timing difference introduced by zero-store elim-
ination, and the microcode versions affected by zero-store
elimination. We showed that, depending on the microcode
version, zero-store elimination is present on Alder Lake, Tiger
Lake, and Ice Lake processors. Our analysis revealed signifi-
cant security implications of zero-store elimination in a side-
channel context. We showed how value-based optimizations
break traditional side-channel attacker models, exposing par-
tial value information (as opposed to metadata). We applied
zero-store-based attacks to leak the keys of Supersingular
Isogeny Key Encapsulation (SIKE). Using our attack, we
leaked 208 bits of a 217-bit SIKE key with an average of 1
measurement per bit. We additionally analyzed elliptic curve
cryptography and RSA decryption as potential attack targets.
We proposed a tool based on Intel Pin to detect zero-store
elimination in binaries and proposed mitigations to defend
against zero-store elimination attacks. Our findings caution
against the broader implications of value-based optimizations
and urge careful consideration of their security risks in future
processor designs.
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