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Abstract
The ability to cause precise faults during the execution of mi-
croprograms, e.g., the microcode update routine of a CPU, can
constitute a powerful and stealthy primitive to compromise a
CPU at the microarchitectural level. However, the complexity
of modern CPUs inherently limits the possibility of inducing
such controlled faults in microarchitectural components. It is
therefore unclear to what extent an attacker might be able to
use hardware fault injection attacks against microcode.

In this work, we present a robust and reproducible experi-
mental platform that pairs a low-cost glitcher with a coreboot-
based environment on a “Red Unlocked” Intel Goldmont SoC.
Leveraging the low-noise execution environment provided
by this setup, as well as the possibility of crafting custom
microcode routines due to Red Unlock, we successfully iden-
tified previously undocumented fault types, including instruc-
tion skips at both the architectural and microarchitectural
levels on Apollo Lake CPUs. This provides a foundation for
future investigations into Intel microcode security, and the po-
tential for broader applications across various CPU models.

1 Introduction

The x86 instruction set relies on microcode to implement
complex instructions, a design principle established with the
8086 microprocessor [23]. This means that certain instruc-
tions, deemed too complex to implement in hardware, are
executed as elaborate microprograms in the CPU backend.

The “Red Unlock” of Intel Goldmont SoCs by Ermolov and
Goryachy [11] unlocked powerful debugging features on pro-
duction CPU units. It made possible to dump the microcode
ROM, reverse engineer the architecture, release a disassem-
bler [16], and even identify some undocumented x86 opcodes
used to debug microcode [12]. Ultimately, this allows to write
and execute custom microprograms on Intel Goldmont CPUs,
which can be used to study the processor’s microarchitecture.

∗This project was developed while at the Vrije Universiteit Amsterdam

Concurrently, separate research efforts demonstrated the
feasibility of voltage fault injection attacks on Intel CPUs,
leveraging hardware on the motherboard to inject glitches
in x86 cores. Researchers demonstrated that they could fault
some operations (IMUL) as well as extract cryptographic keys
from the Intel Software Guard Extensions (SGX) secure en-
clave [9, 8, 28, 24, 30].

We aim to investigate whether the findings from these two
distinct areas of research can be combined to manipulate the
behavior of the CPU at the microcode level.

To this end, we built a robust setup to experiment voltage
fault injection on the Goldmont platform. This has two main
advantages:

1. The extensive public research on Goldmont microcode
structure gives the ability to modify x86 instructions
behavior with custom microprograms [12], and it allows
us to test individual aspects of the hardware.

2. Open firmware projects support Goldmont CPUs, mak-
ing it possible to easily create a stable test environment.

We show how our setup is able to achieve instruction skips
at both architectural and microarchitectural level on Gold-
mont CPUs, and present a characterization of fault types for
microcoded instructions.

Our contributions can be summarized as follows:

1. We present a coreboot-based open-source tool1 to effi-
ciently conduct (microcode) glitching experiments on
Goldmont CPUs.

2. We provide a characterization of new behaviors in Intel
CPUs under fault conditions, such as (micro)instruction
skips and faults in basic arithmetic operations, which
were previously considered immune to faults [28].

3. We present the first documented instances of microcode-
level glitches occurring in customized microprograms.

1https://github.com/ceres-c/coreboot/
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2 Background

2.1 Red Unlock
Since the Pentium Pro era, Intel considers Design For Debug/
Validation/Testability (DFX) a crucial technological advan-
tage, essential for product success [18]. As such, all IP blocks
now incorporate extensive DFX features. These pervasive
debugging features are not limited to preproduction chips,
but they remain accessible on final production devices to an-
alyze faults that might appear on the final user’s hardware.
Since they enable fine-grained debugging of all the compo-
nents of a microprocessor, unconditional access to these tools
would raise obvious security concerns. Intel then implemented
an authentication system, enforced by the DFX Aggregator
(henceforth DFX AGG), that supports 3 different DFX unlock
levels [21]: 1. Red - Intel internal 2. Orange - BIOS vendors
3. Green - Customers

Green unlock provides access to the architectural state only
while, on the other end of the spectrum, Red unlock guarantees
complete control of DFX features and access to microarchi-
tectural aspects. Red unlock can be achieved in 4 different
modes [12]: 1. Hardware straps; 2. Efuses; 3. JTAG password;
4. Software. To unlock DFX mode via software, another priv-
ileged component of the CPU or Platform Controller Hub
(PCH), e.g., the Power Control Unit (PCU) or the Manage-
ment Engine (ME), must write the value corresponding to a
specific DFX level to the PERSONALITY register of the DFX
AGG.

On desktop and server CPUs there are two different DFX
AGGs, one for the PCH, and one for the ME. As such, setting
the PERSONALITY of either will grant access only to the cor-
responding realm. On Intel SoCs, however, there is only one
DFX AGG, and setting the PERSONALITY there guarantees un-
restricted access to the whole platform [15]. Through a code
execution exploit on Intel ME version 11, Goryachy et al. [15]
were able to achieve Red Unlock on Intel Goldmont/Apollo
Lake SoCs, unlocking debug of all IP cores.

2.2 From Assembly to Microcode
This section briefly describes the microcode decoding process
within the core pipeline frontend, depicted in Figure 1.

Each instruction coming from the Instruction Cache is
decoded by the Legacy Decode Pipeline, which performs
the conversion from x86 instructions to microinstructions
(henceforth µ-instructions). First, it decodes the length of the
instruction, then the bytes are fed into one of the decoders in
the pipeline. Such decoders can be divided in:

1. Simple Decoders, which directly map an x86 instruction
to a µ-instructions.

2. Multi-Instructions Decoders, which translate instruc-
tions to a sequence of 2-4 µ-instructions.
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Figure 1: Intel Skylake Pipeline Frontend, simplified [22,
Figure 2-4][31]

3. a Microcode Sequencer that maps complex instruc-
tions like CPUID or RDRAND to long µ-instructions chains,
called microprograms [22, §B.5.7.4][5].

The Microcode Sequencer uses components that resemble
those of a full CPU, such as an instruction pointer, a set of
registers and memory [16].

The decoded instructions are then fed to both the Micro-
operation Cache and into the Microoperation Queue from
where, after various additional optimizations steps, they will
finally be executed. When a loop is detected, the Legacy De-
code Pipeline is disabled and the Microoperation Queue is
fed directly by the Microoperation Cache until a cache miss
happens.

2.3 Microcode Internals

By gaining complete debug access on Goldmont through
Red Unlock [15], researchers were able to read the Mi-
crocode Sequencer ROM (MSROM), reverse engineer its
structure and functionality, and figure out how microcode
can be patched [12]. Further research resulted in a UEFI-
based framework [5] and a Linux library [25], both capable
of assembling and installing custom microcode patches.

2.3.1 Microcode Structure

Microcode execution in Goldmont CPUs is performed in tri-
ads, i.e., triplets of µ-instructions that are executed in parallel.
The individual result of each µ-instruction is combined to
the other components of the triad based on the directives
contained in a separate sequence word (seqword) [15]. Such
triplets, and their corresponding seqwords, are stored in the
MSROM.

In particular, the MSROM is composed of two different
arrays: one contains quartets of µ-instructions (three are pop-
ulated, the fourth is zero-filled), and the other stores the corre-
sponding seqwords. There is a direct address correspondence
between the two arrays: the seqword at a given address con-
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trols the µ-instruction triad located at the same address in the
µ-instruction array [15].

Finally, microprograms can also be patched. Microcode
patches are stored in the Microcode Sequencer RAM
(MSRAM) in two arrays that mirror the MSROM structure.

2.3.2 Match/Patch Registers

Match and Patch register pairs are used to implement the mi-
crocode patching functionality. In particular, each pair forces
the Microcode Sequencer to transparently steer execution
from a matched address, to a new patch destination [14, 5].
They can be used to decide whether the Microcode Sequencer
should execute the base version of a microcode program,
which is stored at production time in the MSROM, or a
patched version stored in the MSRAM. After writing mi-
crocode patches in MSRAM, the execution unit must be in-
formed of which MSROM address should be replaced with
the new code. On Goldmont CPUs there are 64 such 31-bits
registers.

2.4 Voltage Fault Injection

Voltage-based fault injection, also known as voltage glitching,
is a well-known, cheap technique that can be used to inject
faults on security-sensitive software, either through a software
interface or through direct physical access. In scenarios in
which an attacker has physical access to the target, it generally
involves modifying the power rail of the Device Under Test
(DUT) to inject a glitch, either directly via the power supply
or through crowbar glitching [29]. While in the general case
such glitches could completely disrupt the hardware’s ability
to execute software, when accurately injected they allow for
attacks such as skipping instructions that perform checks or
inserting faults in a cryptographic algorithm to recover the
key through Differential Fault Analysis (DFA) [4, 3].

However, applying these methods to modern x86 CPUs
is non-trivial, as doing so requires managing both their high
current consumption and complex bring-up sequences.

2.4.1 Glitching Through Voltage Scaling

As research on these techniques has advanced, a new volt-
age fault injection vector has emerged: generating glitches
through the Power Management Integrated Chip (PMIC), the
power supply used for CPU frequency/voltage scaling. These
attacks can be divided in two groups, based on whether they
require physical access to the target system:

1. Remote access: CPU voltage is controlled indirectly
through the software interface exposed by the CPU. This
was exploited in Plundervolt [28] and V0LTpwn [24],
and Intel quickly mitigated these attacks disabling the
voltage control interface via a microcode update.

2. Physical access: VoltPillager [9], PMFault [8] and
Buhren et al. [7] attacks require modifications the DUT,
gaining access to the data lines that connect the CPU
to the PMIC. In particular, the attacker needs to add
an external hardware device that instructs the PMIC to
change the supplied voltage, which grants higher relia-
bility and finer control on the glitch shape. This can be
done accurately with a relatively low-budget setup.

The authors of the first attack, Plundervolt [28], found the
IMUL instruction to be susceptible to bit flips when using
specific operands in a certain order, whereas simpler arith-
metic operations such as OR, XOR and AND were never affected.
Furthermore, by injecting faults during cryptographic opera-
tions, they successfully recovered AES and RSA keys from
SGX applets through DFA. Building upon this work, the re-
searchers behind VoltPillager [9] addressed Intel’s mitigation,
which removed software access to voltage controls, connect-
ing directly to the motherboard’s voltage regulator chip. This
hardware-based approach not only replicated the results of
Plundervolt on fully patched systems, but also demonstrated
new fault types, and allowed for more precise voltage control,
leading to higher success rates.

2.4.2 Intel Voltage Scaling

On Intel CPUs specifically, it is possible to find multiple
power management systems that operate at different granular-
ity levels [10]:

1. Power Management Controller (PMC): A coprocessor
in the PCH that manages power at the package level and
handles power state transitions [6].

2. Power Control Unit (PCU): A coprocessor in the CPU
that runs custom PCODE and controls the CPU power
state.

3. Power Management Unit (PMU): Hardwired logic to
handle power management in the PCH.

4. Power Management Engine (PME): Hardwired logic
to handle power gating (component de/activation) in
each IP core.

The PMC communicates with the external PMIC, which in
turn drives the Voltage Regulator Modules (VRMs) to ob-
tain the required voltage. Depending on the aggregate power
consumption of the package, the PMC will ask the PMIC to
adjust the voltage of the appropriate power rail. The PMC and
PMIC can communicate with two protocols:

1. SVID: An SPI-like Intel proprietary communication pro-
tocol documented in CPU datasheets [20, Table 34-4],
and used in the VoltPillager attack [9] to inject faults in
the CPU.
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2. PMBus: An open-standard variant of SMBus, which
is itself based on the I2C protocol. It was used for the
PMFault attack [8].

SVID is faster, reaching speeds up to 25 MHz, while PMBus
is limited to 5 MHz, the maximum speed of I2C. In reality,
most PMBus PMICs support only up to 1 MHz. For voltage
glitching, a higher communication speed is advantageous, as
it reduces the communication overhead when generating a
glitch.

3 Threat Model

This research is a study into the feasibility of voltage fault
injection at the microarchitectural level. We consider an at-
tacker with physical access to the victim hardware, who wants
to invisibly modify the behavior of any software executed on
the target. This includes secure enclaves or System Manage-
ment Mode (SMM) code, which operate in isolation and are
typically beyond reach of a privileged remote attacker. Fur-
thermore, the authors of PMFault [8] were able to use the
Baseboard Management Controller (BMC) to remotely inject
faults, which makes the physical access constraint optional
when targeting specific devices.

While our work concentrates on Goldmont CPUs since
they provide an experimental ground truth for microprograms,
it should be noted that our hardware/software setup does not
intrinsically require Red Unlock to attack architectural opera-
tions and pre-existing microprograms, and our infrastructure
can be in principle used to test to other CPU families.

4 Overview

In this work, we aim to evaluate the ability of an attacker to
inject precise faults on a modern CPU with a minimal setup,
by injecting messages into the bus between the PMIC and the
PCH. To test for the effects of such glitches on microcode
specifically, we target Intel Goldmont CPUs, for which we can
craft arbitrary sequences of microinstructions by leveraging
the Red Unlock privileges.

Since the target market for Goldmont processors differs
substantially from that of the Core-series processors used in
previous fault injection studies (Section 2.4), there are notable
differences in both microarchitectural design of the CPU and
in the electrical properties of the PMICs. Hence, to establish
a baseline for our specific hardware, we first tested known
architectural faults on this target.

After verifying that voltage fault injection is effective on
the DUT, we leverage the microcode patching capabilities
on Red Unlocked hardware to replace the implementation of
x86 instructions with minimal microprograms, and attempt to
glitch them. This provides insight on the effects of our glitch
attempts, as we are aware of which µ-instructions the CPU is
executing.

4.1 Challenges

Successfully injecting and characterizing microcode faults
presents several key challenges. First, the target CPU supports
exclusively PMBus, which limits the temporal resolution of
the injected glitches due to its lower speed. A direct commu-
nication channel is also needed to synchronize the external
glitching hardware with the target. We use the onboard UART
for this purpose, allowing the target to signal when each ex-
periment begins. Finally, the unpredictable nature of voltage
glitches demands a carefully controlled, noise-free execution
environment. Running the experiments on top of a full operat-
ing system would introduce significant variability due to task
switching and background processes, making it impossible to
reliably attribute observed faults. A minimal firmware-based
setup is therefore essential to isolate execution to only the
target code, enabling a clear characterization of the effects on
specific instructions and microinstructions.

5 Experimental Setup

To address the challenges described in subsection 4.1 we
built an experimental setup based on inexpensive and widely
available components. Figure 2 provides a summary of the
setup, while a complete picture can be found in Figure 9.

5V

VCore probe

PMBus

UART

Oscilloscope

Host

PMBus probe

Laboratory PSU

Target

Glitcher

USB USB

Figure 2: Experimental setup overview

The DUT (Target) runs code in a loop, and is essentially
independent from the rest of the system. A cheap microcon-
troller board (Glitcher) injects control packets to the target’s
PMIC and monitors the state of the target. A computer (Host)
orchestrates the glitching campaign, configuring the glitcher
and deciding when to reset the DUT based on the results
received from the glitcher. A programmable power supply
(PSU), connected to the main power input of the DUT, is
used to power-cycle the target when it becomes unresponsive.
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Finally, an Oscilloscope is used to get an independent mea-
surement of the CPU Core power supply line (VCore) and
check the state of the PMBus bus for debugging purposes.

5.1 Target

We chose the UP Squared Single Board Computer (SBC)
with a Pentium N4200 CPU as our target, utilizing multiple
boards with both 4GB and 8GB of soldered RAM to validate
the repeatability of our results across different samples. The
Red Unlock exploit by Ermolov and Goryachy [11] has been
recently ported to this device by Krog and Skovsende [26].
Notably, the authors of the port have also released a complete
BIOS image that embeds both the exploit and the vulnera-
ble Intel ME binary, making the attack highly reproducible
with publicly available software (the file is also available on
our repository2). Since the N4200 CPU does not allow for
software-based voltage control, we are only able to inject com-
mands through the power management bus, which is PMBus
for this board. This is done by soldering the Glitcher wires to
the PCB traces that connect the CPU to the PMIC.

5.1.1 Hardware

The Squared uses a Texas Instruments TPS65094 PMIC,
specifically tailored for Apollo Lake CPUs, which automat-
ically manages voltage sequencing and chip bring up. We
modify the target Squared board to access:

1. PMBus signals (SDA, SCL): to send the PMIC our con-
trol packets.

2. VCore: The tension supplied to core circuitry (execution
units) [20, Table 41-5].

The TPS65094 datasheet [19] provides a reference implemen-
tation that helps in locating the PMBus traces on the circuit
board.

To communicate with the glitcher, we use the UART serial
bus on connector CN16 [2]. While it would be preferable to
use UART flow control pins like RTS or CTS as a trigger due
to their atomicity, we are unable to identify them on the board
and conclude that they are not exposed.

5.1.2 BIOS

In our tests, booting any Red Unlockable board with the stock
BIOS and the Red Unlock exploit enabled takes multiple min-
utes. This would severely limit the feasibility of this study, as
we anticipate a high number of resets for the target, especially
in the exploratory phase of our attack with broad glitching
settings ranges. The UP Squared, however, is supported by

2https://github.com/ceres-c/coreboot/blob/thesis-
24.02.01/blobs_libmicro/coreboot.rom

the coreboot project3. This provides us with a minimal, open-
source BIOS codebase that we can modify to fit our needs.
Furthermore, since coreboot is a single-threaded application,
there is no scheduling or resource contention, which yields
less noise on the system and higher experiment reliability.

Booting coreboot with debug output, we are able to deter-
mine the boot is being delayed when Intel Firmware Support
Package (FSP) is notified of the imminent transfer of control
from coreboot to its payload (POST code 0x88). Normally,
this operation would be instantaneous, but when the Red Un-
lock exploit [13] is included in the ME image, this step takes
minutes to execute, before eventually booting successfully.
We speculate this delay is due to the exploit itself, which in-
troduces an infinite loop in Intel ME code after unlocking the
CPU. When the FSP is notified of the imminent execution of
the OS, it might need to communicate with ME, which is not
able to respond. Eventually, the FSP will time out, and return
control to coreboot, which proceeds to launch its payload.
Notably, the FSP notify phase can also be skipped, and the
target will quickly boot into Linux.

In order to execute experiments as quickly as possible after
power-up, all of our experiments run directly within coreboot,
before the FSP notify phase. Since we also want to leverage
the possibility of installing custom microcode in the CPU, we
modified lib-micro4 [25] to work in 32-bit protected execu-
tion mode, which is the standard for coreboot. Empirically
we observed that a stable experimental environment for mi-
crocode can be setup only after the firmware configures the
package power limits, otherwise the CPU would hang.

The setup we obtained is able to execute code within
700 ms of power-up, and can successfully load custom mi-
crocode patches.

5.1.3 Software

Each experiment running on the target is composed of the
following operations (cf. Listing 1):

1. The target sends a synchronization character (R) to the
glitcher via UART to signal the start of the experiment.

2. Testcase runs on the target.

3. The target sends a second synchronization character to
notify completion (D).

4. The result of the experiment is sent to the glitcher (cf.
Figure 3).

The communication is unidirectional and the target runs
independently of any other component of the setup. This
procedure also enables detection of whether the target resets
due to the glitch (D not received by the glitcher) or if it is
transmitting garbled data because it ended in some unexpected
state.

3https://coreboot.org/
4https://github.com/ceres-c/lib-micro
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uint32_t output;

while (true) {

uart_tx('R');

/* Unrolled asm loop modifying 'output' */

uart_tx('D');

uart_tx(output);

}

Listing 1: Pseudocode running on the target

We minimize the target code to reduce the risk of inadver-
tently glitching CPU components that we are not interested
in. Moreover, since loops ending in a conditional jump would
activate the branch predictor, and are themselves a potential
injection target, we manually unroll any loops in the testcase
to make sure that any effects observed in the output come
from the testcase instructions.

5.2 Glitcher

5.2.1 Hardware

The glitcher hardware does not have stringent requirements:
any microcontroller supporting I2C and UART communica-
tion would be suitable. For this work, we selected the cheap
and widely available Raspberry Pi Pico board, which mounts
an RP2040 microcontroller. To ensure compatibility with the
DUT, which utilizes a PMBus bus voltage of 1.8 V, we mod-
ified the Pico board to power the RP2040 with an external
1.8 V power supply, as stated in the datasheet [27, §2.9.7.3].

Since the glitcher also communicates with the target on
the UART bus, which operates at 3.3 V, we added a Texas
Instruments TXS0102 Bidirectional Voltage-Level Translator
to step the UART voltage down to a safe level for the Pico.

We note that our modifications to the Pico board, which
required SMD soldering, can be bypassed by using a board
that natively operates at 1.8 V, such as the ST NUCLEO-
U575ZI-Q.

5.2.2 Software

The glitcher acts as a middleman between target and host,
injecting a glitch with the configuration provided by the host,
and notifying the latter if the target becomes unreachable.

Figure 3 describes the sequence of operations for the
glitcher. Once the glitcher is armed by the host computer,
it will wait for the next synchronization character R from the
target, and inject a PMBus packet to trigger a voltage drop. If
the target is still online after the glitch, the output of the cur-
rent testcase execution is received from target and forwarded
to the host.

UART ‘R’ ‘D’ output ‘R’

PMBus Vp V f Vcc

VCore

Tp Tf

Vcc

Vp

Vf

Figure 3: Glitch signal sequence

5.2.3 Two-Stage Glitching

While the Squared board is one the few targets that has both
a working Red Unlock exploit readily available and support
for Coreboot, we found that its PMIC’s slew rate is limited
to ∼3 mV/µs [19]. For comparison, the PMIC used in the
VoltPillager attack [9] had a 20 mV/µs slew rate, and spe-
cialized tools like the ChipWhisperer can achieve rates over
1500 mV/µs [29], delivering rapid and precise voltage drops.
The slew rate is a significant aspect of a glitch: if the voltage
drops too slowly the glitch might have no effect on the target
device, it might affect the behavior of many components and
become uncontrollable, or the target could detect a power loss
and reset autonomously.

When designing the shape of our glitch, we must accom-
modate for such limitation. Our initial attempts to inject a
glitch using a direct, single-slope voltage drop proved ineffec-
tive due to the PMIC’s low slew rate. To overcome this, we
adopted a two-stage glitch approach described by Chen et al.
[9]. This technique involves lowering the voltage to a prepara-
tion voltage Vp, where the target remains operational, before
initiating the final voltage drop for the glitch itself. While this
does not change the effective slew rate, it allows the target
to stabilize at a lower voltage, and results in voltage drops
with higher temporal precision. Our glitches (cfr Figure 3) are
therefore characterized by the following parameters:

1. Vp: Preparation voltage, the lower bound of the CPU
stability voltage range.

2. Vf : Fault voltage, the target voltage during the glitch.

3. Tp: Preparation time, the external offset of the glitch, or
for how long Vp must be held (µs).

4. Tf : Fault time, the width of the glitch, or for how long
Vf must be held (µs).

Timings are also influenced by the transmission time of each
PMBus command sent by the glitcher to the PMIC.

5.3 Power Supply
As a power supply for the DUT we utilize a KORAD
KA3305P for its clean signal and absence of over/undershoot
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relative to the set point voltage when enabling the output. This
model can be controlled over USB, simplifying the process
of rebooting the DUT. The Squared is powered at 5.3 V, as
measured from the original power supply, and consumes on
average 1.1 A when running coreboot.

5.4 Host

The host PC orchestrates the entire setup, communicating
with both the glitcher and the power supply via USB. If the
glitcher indicates that the target is unresponsive, the host will
reset it using the laboratory power supply. We have developed
an extensible Python library that provides convenient APIs
for interacting with the glitcher.

After every testcase, the result of the current operation on
the DUT is analyzed by the host to identify faulty executions.
Each individual result (normal output, fault or crash) is col-
lected as a data point in an SQLite database [1] and visualized
with Matplotlib in a Jupyter notebook.

6 Glitching Experiments

The goal of our experiments is to first assess if our specific
target device is vulnerable to known architectural glitches,
and then expand to microarchitectural components of the
CPU by crafting ad-hoc microprograms. For our microcode
experiments, we first target microinstructions that map to
architectural faults, to study such faults in detail. Secondly,
we target instructions that are highly likely to cause security-
sensitive side-effects if glitched, e.g. skipping comparison
instructions.

We prepare experiments that execute small snippets of
x86 assembly in an unrolled loop, as mentioned in Listing 1,
to characterize specific aspects of DUT when attacked with
voltage glitching. Finally, we repeat similar experiments on
microprograms, by crafting custom microcode patches and ex-
ecuting the patched instructions multiple times in a sequence.
We test the same snippet with different values for Vf and Tf
(“depth” and “width” of the glitch, respectively) and report
the result of each individual run in a plot:

• Green dots represent normal executions.

• Yellow dots represent unexpected states (hangs, garbled
data, no response, etc.).

• Red dots represent successful glitches.

In the plots, color intensity indicates datapoint density. Since
each combination of settings is tested multiple times, a darker
shade represents a higher concentration of identical results at
that position.

Throughout all our experiments, voltages are expressed as
PMIC Voltage IDs (VIDs) as per the PMIC datasheet [19,

Table 6-3], and time measurements are reported in µs. Assem-
bly code is in AT&T syntax, as used in coreboot, and x86
microcode uses lib-micro [25] C macros syntax.

6.1 Identifying Glitch Parameters

Each experiment requires an exploratory phase to characterize
the behavior of the DUT with the specific workload. Since
each component of the CPU has a different instability voltage,
we initially have to evaluate every target with broad settings
ranges. Furthermore, due to the aforementioned limitations of
the PMIC (cf. 5.2.2), the glitch we introduce has four config-
uration parameters, expanding the search space exponentially.
We can however optimize this preliminary stage with two
considerations:

1. We aim for Vp to be near the lowest voltage at which the
CPU executes the specific payload without faults. The
lower Vp is, the faster we can drop to Vf (cf. Figure 3).

Setting Vf =Vcc we can establish an appropriate value
for Vp independently of other settings, essentially re-
verting to a one-stage glitch. To ensure this Vp value is
not interacting negatively with the target, we maintain
VCore at Vp for a long period Tp, and verify the DUT is
not crashing due to the voltage drop.

As an example, in Figure 4 data points for Vp > 35 are
mostly green (i.e. normal execution): an interval around
Vp = 35 is a good initial range.

2. Tp does not need to be precise when running characteri-
zation experiments. Each iteration of the (unrolled) loop
execute the same code thousands of times, which means
that VCore can be dropped at any point in time to Vf ,
and the results should be the same. We are not aiming
at a specific fragment of a long procedure, but rather
evaluating if the current workload is affected by voltage
drops. In this scenario Tp needs only to be enough for
VCore to stabilize at Vp. Tp would be critical when at-
tacking the microcode update, as in that case it would
be necessary glitch a specific operation within the whole
update procedure.

6.2 Assembly Experiments

6.2.1 IMUL

We first replicate the attack against IMUL presented in Plun-
dervolt: Murdock et al. [28] observed that the result of the
multiplication had flipped bits when certain operands were
arranged in a specific order.

The target executes code in Listing 2, which is comparing
the results of two multiplications and adding one to ecx if the
results are different.

7
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Figure 4: Estimating Vp for IMUL glitching

movl $0x80000, %eax; # operand1

movl $0x4, %ebx; # operand2

movl %eax, %edx; # loop body start

imull %ebx, %edx;

movl %eax, %edi;

imull %ebx, %edi;

cmp %edx, %edi;

setne %dl;

addb %dl, %cl; # loop body end

Listing 2: Target code for IMUL

We confirm the DUT is vulnerable to fault injection and, after
optimizing the glitch parameters, achieve a success rate of
∼4%5. Throughout the glitching campaign, the target code
executed at 2.4 Hz due to the eventual resets, yielding a glitch
ratio of 0.016 glitch/s (1 min/glitch). Figure 5 shows the re-
sults of our campaign.

V
f

Tf

Figure 5: IMUL glitching

Furthermore, we found notable differences with Plunder-
volt results:

1. We can corrupt the result of the multiplication regardless
of the order of the operands 0x80000 and 0x4 6.

2. While generally the target only reports a handful
of glitches, occasionally the glitch count becomes
0x200000, which corresponds to the product of the two
operands7. Given the target code in Listing 2, we can
see that the register edx is used both as a destination
for the multiplication result, and as storage for SETNE.
The lowest byte of edx is then added to the fault counter
ecx with ADDB. A possible explanation is that, due to the
injected glitch, the full 32-bit register is being added to
ecx instead of only the low 8-bits.

These two facts suggest that the component affected by the
voltage drop might not be the multiplier, but rather 1. the CMP
instruction of the snippet in Listing 2 or 2. the Register File.

6.2.2 CMP

As our next target, we choose to test CMP instructions. These
instructions are known to be an interesting glitching target,
as software can use comparisons to check protections, access
rights, or signature validity.

To investigate this behavior, we further reduce the code in
Listing 2. In the new target code, CMP compares two fixed

5Database [1] table _02a46ea_mul_2
6Database [1] tables _02a46ea_mul_2 and _02a46ea_mul_swap
7Database [1] table _02a46ea_mul_2
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operands, and a counter value is incremented whenever they
are found to be different (cf. Listing 3). It’s worth noting that
this code also relies on the Arithmetic Logic Unit (ALU),
because CMP on x86 is implemented as a SUB, the result of
which is then discarded.

movl $0xAAAAAAAA, %eax;

movl $0xAAAAAAAA, %ebx;

cmp %eax, %ebx; # loop body start

setne %dl;

addb %dl, %cl; # loop body end

Listing 3: Target code for CMP

In this test we find a significant increase in glitches, with
approximately 74% of executions (cf. Figure 6) reporting the
two values to be non-equal at least once8. Since the optimal
glitch parameters (Vp and Vf ) were such that the DUT was
not resetting often, we achieve a 72 glitch/s rate. This higher
success rate can be attributed to the reduced number of in-
structions in this target; without the two IMUL operations, CMP
is executed more frequently per unit of time, increasing the
probability of it being faulted.

C
ou

nt

Faults per iteration (bin size = 6)

Figure 6: Distribution of faults in CMP test

6.2.3 Register File

With this experiment we want to test whether the induced
glitches are able to affect the values stored in the Register
File. To this end, we employ the code shown in Listing 4.
This code truncates a fixed value (0x0101 to 0x01) and accu-
mulates result of truncation in the ecx register. To achieve an
experiment runtime that allows VCore to drop to sufficiently
low values, the (unrolled) loop is executed 271000 times, with
the expected value in ecx also being 271000.

8Database [1] table _5e872de_cmp_2

mov $0x0101, %eax;

movb %al, %bl; # loop body start

add %ebx, %ecx; # loop body end

Listing 4: Target code for register file

If our hypothesis holds true, we expect to see values greater
than 271000: the full value 0x0101 will be added to the
counter rather than just the single byte 0x01, hence the final
result will be larger. However, as shown in Figure 7, we ob-
serve values that are either slightly smaller than the expected
271000, or normally distributed around 2625009, hinting at
instructions skip. We found 2385 non-expected results on a to-
tal of 11854 attempts, a 19% success rate, with 0.375 glitch/s.
Specifically:

• 944 (40%) result < 269500.

• 1289 (54%) 269500 < result < 271000.

• 152 (6%) result > 271000, but these values were or-
ders of magnitude greater than the expected value, so we
classify them as false positives.

C
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Result value (bin size = 1500)

Figure 7: Distribution of result values in register file test
(successful glitches only)

This analysis yields two key findings. First, it demonstrates
that Intel’s low-power SoCs are susceptible to fault injection
attacks previously observed only in their high-power Core
CPU counterparts. Second, we found that even simple instruc-
tions can be glitched or skipped.

6.3 µ-instructions
Given that the target device has been confirmed to be vulnera-
ble to glitching attacks at the architectural level, we now shift

9Database [1] table _03168d2_reg
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our focus on injecting glitches in microarchitectural compo-
nents. We choose µ-instructions that are closely related to
architectural instructions we found to be vulnerable, and that
could help in glitching real microprograms.

On Red Unlocked hardware, the implementation of mi-
crocoded x86 instructions can be replaced with custom micro-
programs. We apply to µ-instructions the same approach we
used before: create minimal microcode snippets that target
specific aspects of the DUT. Using our 32-bit compatible
version of lib-micro10 [25], we move our test code “inside”
the RDRAND operation. Thus, the body of the assembly loop
from Listing 1 now consists of calls to RDRAND only.

6.3.1 CMP Branchless

We patch RDRAND to implement Listing 3 in a single x86 op-
code: compare the values in two registers, and add 1 to the ac-
cumulator if they are different. In Listing 5, SUB_DSZ32_DRR
will set TMP0’s per-register flags, that are then used by
SETCC_CONDNZ_DR to set the temporary register TMP1 to 1
when the subtraction result is non-zero. Finally, the condi-
tional value of TMP1 is added to the architectural register rcx,
accessible as ecx in protected mode.

{
SUB_DSZ32_DRR(TMP0 , RAX, RBX),
SETCC_CONDNZ_DR(TMP1 , TMP0),
ADD_DSZ32_DRR(RCX, TMP1 , RCX),
END_SEQWORD

}

Listing 5: CMP target implemented in µ-instructions.

Despite using wide settings ranges and testing for up to
36 h, we were not able to inject any meaningful fault in this
target. There are less than 10 tests reported as successes11, but
the number of faulted instructions are not coherent with our
expected values, and we deem them to be false positives with
corrupted data from the target misinterpreted as a successful
glitch. This result suggests that the x86 instructions in List-
ing 3, which was successfully glitched, have a more complex
implementation than the basic microcode we are now testing.

6.3.2 CMP Branching

To further investigate the the architectural faults observed in
6.2.2, we implemented a more complex version of the CMP
microprogram that utilizes conditional jumps. Due to imple-
mentation details of jumps in the microcode sequencer [16],
we created two distinct microprograms to thoroughly test
this target: one with a speculatively taken branch on equality
(Listing 6) and another with a speculatively taken branch on
inequality (Listing 7).

10https://github.com/ceres-c/lib-micro
11Database [1] table _5e872de_rdrand_cmp_ne_3

Extensive testing of both variants, for durations up to 63 h12,
failed to produce any meaningful faults. We therefore rule
out the comparison logic circuit, microcode jump operations,
and branch misprediction as possible root causes of the previ-
ously observed faults. It is then possible to conclude that the
faults in the CMP x86 operation were caused by architectural
components of the CPU.

6.3.3 µ-instruction Skip

To investigate the instruction skip highlighted by the exper-
iment in 6.2.3, we create a target to identify both architec-
tural and microarchitectural faults of this kind. The code in
Listing 8 performs 10 separate additions to the value in the
accumulator register ecx, adding 1 each time.
RDRAND is invoked 80000 times in this target, thus the ex-

pected final value of the accumulator is 800000. If an instruc-
tion is skipped, then the final value is <800000, and it can
either be a multiple of 10 or not. In the first case, a call to
RDRAND was skipped, thus missing 10 ADDs. Conversely, if the
value is not a multiple of 10, then a µ-instruction was skipped.

C
ou

nt

Result value

Figure 8: Distribution of result values in µ-instruction skip
test (successful glitches only)

After tuning our glitch settings, we found 160 faulty ex-
ecutions after 106000 attempts, a 0.1% success rate13. Of
these:

• 6 are not multiples of 10

• 139 are multiples of 10

• 15 are spurious results, orders of magnitude away from
the expected value

We conclude architectural instruction skip is more common
than microarchitectural skip with our settings (cf. Figure 8).
The high prevalence of 799990 also tells that in most experi-
ments only a single x86 instruction is skipped.

12Database [1] table _8Gb_ab3a109_ucode_cmp_jmp_ne
13Database [1] table _4a2b3cf_customucode_add10
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6.3.4 Bit-Flipping in µ-instructions

We modify the target from 6.3.3 to consolidate all the addi-
tions in a single architectural RDRAND call. A microcode-
only loop implementation (Listing 9) further isolates the exe-
cution to the microcode engine.

This experiment did not produce any instruction skips. In-
stead, all faults were data corruptions, producing values like
0x39fffd and 0xe9fffd, consistently one or two bitflips
away from the expected value of 0x29fffd. The location
of these bitflips, predominantly within the 3rd byte of the
result, corresponds to the architectural pattern reported in
Plundervolt [28], suggesting that the original fault mode ex-
tends to the microarchitectural level. There were 61 such data
corruptions over 102222 attempts, a 0.05% success rate at
∼1 glitch/min14.

6.3.5 URAM

To test if energy-intensive components of the microarchitec-
ture were more vulnerable, we targeted the Microcode RAM
(URAM). Our microprogram executes a loop that writes a
value to URAM, reads it back, and compares the two, incre-
menting an architectural register if a mismatch is detected
(Listing 10). Despite extensive testing (64 h), this experiment
failed to produce any successful glitches, and we conclude the
URAM is highly robust against the supply voltage fluctuations
we can induce.

These findings indicate that, predictably, the microarchitec-
ture is a more challenging target for fault injection than the
architectural level. We anticipated this difficulty because volt-
age glitches would likely crash other sensitive, power-hungry
CPU components before affecting our intended targets. De-
spite this, our most crucial discovery is that these components
are not immune. We successfully induced faults analogous to
those at the architectural level, such as bit-flips and instruction
skips, proving that the microarchitecture can be manipulated
via voltage glitching.

6.4 Microcode Updates
Having identified faults using minimal, custom-designed mi-
croprograms, we discuss how our methodology could be ap-
plied to a more complex, real-world target, i.e., the native
microcode update procedure. The internal logic for the up-
date routine has been extensively reverse-engineered by pre-
vious research, which allows to treat it as a gray-box prob-
lem rather than a black box. Furthermore, the update pro-
cess presents a fundamentally distinct target for fault injec-
tion, as the update routine operates in a minimal environ-
ment where hyper-threading is disabled, data is not accessed
through caches [5]15, and likely various other microarchitec-

14Database [1] table _8Gb_405526d_ucode_loop_add_4
15Additional details at https://github.com/pietroborrello/

CustomProcessingUnit/blob/master/Notes.md#ucode-update

tural units are powered down. Crucially, this implies that the
power profile in this context differs significantly from the
conditions of our prior experiments, potentially changing how
voltage glitches affect operation.

6.4.1 Testing Setup Modifications

Target code in Listing 1 can be changed to perform a mi-
crocode update. In addition to checking the installed mi-
crocode version after the update, the execution time of the
microcode update can be monitored through RDTSC. This pro-
vides two different ways to evaluate the outcome of a glitch:

1. Comparing the final installed microcode version num-
ber with the version automatically loaded at boot. This
can be useful when modifying the update file, as the
update process should always detect the that the update
is not correctly signed and abort before completion.

2. Comparing the duration of the update Tu to the median
duration Med(Tu) observed when the same update file
is used without injecting faults. Since the microcode
update process is not constant-time [17], this metric tells
us if the update microprogram continued further as a
result of glitching. This could happen if some check is
skipped or a loop counter is corrupted.

We measured that a successful update to a newer mi-
crocode revision takes Tu ≈ 6740000cycles (∼6.2 ms), but
once the update has been applied, each subsequent execution
of the update procedure will be slightly shorter Med(Tu) =
6160509cycles (∼5.6 ms), as the CPU will not apply the
same version twice. However, when attacking the update
routine, it is expected that each attempt to install the mali-
cious update will always fail unless the CPU is successfully
glitched.

6.4.2 Algorithm Analysis

The microcode update is encrypted with RC4, and signed with
RSA. The RC4 key is generated concatenating a value in the
update file with a secret stored in MSROM, which prevents
key reuse attacks. RSA public modulus and exponent are
provided in the update file, but before being used their hash
is checked against an hardcoded value in the CPU to prevent
an attacker from re-signing the microcode.

We identify the following possible injection points:

1. RSA public modulus check. To ensure the RSA modu-
lus value remains unaltered, its hash is checked against
a value hardcoded in MSROM. If the attacker were to
glitch this comparison, they could sign the update with
any private key.

2. Signature Check. The hash of the decrypted update
content is checked against the signature in the file. If an
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attacker were to skip the signature check through fault
injection, they could load a modified microcode.

7 Conclusions

Our work demonstrates that x86 instructions and microcode
can be faulted using voltage glitching on Intel Goldmont
CPUs. We believe that the software infrastructure we de-
veloped using coreboot provides an environment for highly
reliabile experiments in a controlled, low-noise setting. It can
serve as a solid foundation for further fault injection research,
particularly with more advanced glitch delivery mechanisms.

Experiments were performed across multiple UP Squared
boards with the same CPU model, but different RAM config-
urations to ensure the reproducibility of our findings. Con-
sistent results were observed on all samples, suggesting the
identified fault modes are not device-specific anomalies but
indicative of a repeatable phenomenon. We show evidence
of novel types of architectural faults on x86, that we iden-
tify as data corruptions in the register file, and instructions
skip. We also find µ-instructions skip and bit flips in custom
microprograms.

8 Limitations and Future Work

Improving Glitch Rate. A current limitation of our setup
is the inherent low precision of PMIC-based fault injection:
while we were able to inject faults, the low slew rate of the
voltage regulator makes the glitches less localized and harder
to control. Exploring other fault injection methods, such as
EM or laser, could allow more targeted attacks on microcode.
Applicability Beyond Red-Unlocked CPUs. Our current
results are limited to Red Unlocked Goldmont CPUs. While
this platform gives unparalleled access to microarchitectural
features, it is not necessarily representative of other CPUs. To
generalize our findings, future work can test our experimental
setup and software framework on other Intel CPUs, especially
those without Red Unlock support. Of course, in such cases,
testing custom microprograms will no longer be possible, but
it is possible to test architectural programs and compare with
our result.
Microcode Updates. In future work, we plan to expand our
testing to the microcode update routine and investigate the
feasibility of applying faults during the update phase.

9 Related Work

Voltage fault injection in x86 CPUs via the onboard PMIC
was pioneered by Plundervolt [28] and VoltJockey [30], which
exploited a software voltage control interface that has since
been disabled by Intel. In this study we use the same concept
of Voltpillager [9] and PMFault [8]: inject commands in the

bus that connects the PMIC to the CPU. We build a setup sim-
ilar to Voltpillager, but use the same communication protocol
employed in PMFault, as the PMIC on the DUT supports
PMBus only. In our work, we focus on microarchitectural
components of the CPU that were not analyzed in the afore-
mentioned papers, but also show new architectural fault types
with a higher success rate.

We leverage previous research on Goldmont microcode,
especially: the seminal work by Ermolov et al. [12], the mi-
crocode update reverse engineering effort by Borrello et al.
[5], and the lib-micro microcode patching library by Krog
and Skovsende [25]. To build a usable microcode glitch setup,
we embed lib-micro [25] in coreboot, modifying it to support
32-bit registers. We believe this design choice is crucial, as
it increases the execution speed of our tests by at least 3 or-
ders of magnitude, and streamlines the setup, minimizing the
number of active components during the glitch.
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A Experiments Code

Assembly code is in AT&T syntax, as used in coreboot, and
x86 microcode uses lib-micro [25] C macros syntax.

{
SUB_DSZ64_DRR(TMP0 , RAX, RBX),
UJMPCC_DIRECT_NOTTAKEN_CONDNZ_RI(TMP0 , (

PATCH_ADDR + 0x04)),
ADD_DSZ64_DRI(R64SRC , R64SRC , 0),
( SEQ_UEND0(2) | SEQ_NEXT | SEQ_SYNCFULL(1) )

}, {
ADD_DSZ64_DRI(R64SRC , R64SRC , 1), /* UJMP

destination */
NOP,
NOP,
( SEQ_UEND0(0) | SEQ_NEXT | SEQ_NOSYNC )

},

Listing 6: µ-instructions CMP, add 1 on non-equal,
speculatively equal

{
SUB_DSZ64_DRR(TMP0 , RAX, RBX),
UJMPCC_DIRECT_NOTTAKEN_CONDZ_RI(TMP0 , (

PATCH_ADDR + 0x04)),
ADD_DSZ64_DRI(R64SRC , R64SRC , 1),
( SEQ_UEND0(2) | SEQ_NEXT | SEQ_SYNCFULL(1) )

}, {
ADD_DSZ64_DRI(R64SRC , R64SRC , 0), /* UJMP

destination */
NOP,
NOP,
( SEQ_UEND0(0) | SEQ_NEXT | SEQ_NOSYNC )

},

Listing 7: µ-instructions CMP, add 1 on non-equal,
speculatively not equal

{
ADD_DSZ64_DRI(RCX, RCX, 1),
ADD_DSZ64_DRI(RCX, RCX, 1),
ADD_DSZ64_DRI(RCX, RCX, 1),
NOP_SEQWORD

},
{

ADD_DSZ64_DRI(RCX, RCX, 1),
ADD_DSZ64_DRI(RCX, RCX, 1),
ADD_DSZ64_DRI(RCX, RCX, 1),
NOP_SEQWORD

},
{

ADD_DSZ64_DRI(RCX, RCX, 1),
ADD_DSZ64_DRI(RCX, RCX, 1),
ADD_DSZ64_DRI(RCX, RCX, 1),
NOP_SEQWORD

},
{

ADD_DSZ64_DRI(RCX, RCX, 1),
NOP,
NOP,
END_SEQWORD

}

Listing 8: µ-instructions skip target

{
ZEROEXT_DSZ64_DI(TMP0 , 0x000D),
CONCAT_DSZ16_DRI(TMP0 , TMP0 , 0xFFFF),
NOP,
NOP_SEQWORD,

}, {
SUB_DSZ64_DIR(TMP0 , 1, TMP0),
ADD_DSZ64_DRI(R64SRC , R64SRC , 1),
ADD_DSZ64_DRI(R64SRC , R64SRC , 1),
NOP_SEQWORD,

}, {
ADD_DSZ64_DRI(R64SRC , R64SRC , 1),
UJMPCC_DIRECT_NOTTAKEN_CONDNZ_RI(TMP0 , (

PATCH_ADDR + 0x04)),
NOP,
( SEQ_UEND0(2) | SEQ_NEXT | SEQ_SYNCFULL(1) ),

}

Listing 9: ADD loop target
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{
ZEROEXT_DSZ64_DI(TMP0 , 0x0007),
CONCAT_DSZ16_DRI(TMP0 , TMP0 , 0xFFFF),
ZEROEXT_DSZ64_DI(TMP1 , 0x5555),
NOP_SEQWORD,

}, {
ZEROEXT_DSZ64_DI(R64SRC , 0x0000),
ZEROEXT_DSZ64_DI(TMP2 , 0x0000),
WRITEURAM_RI(TMP1 , 0x48),
NOP_SEQWORD,

}, {
READURAM_DI(TMP2 , 0x48),
SUB_DSZ16_DRR(TMP3 , TMP2 , TMP1),
UJMPCC_DIRECT_NOTTAKEN_CONDNZ_RI(TMP3 , (

PATCH_ADDR + 0x10)),
( SEQ_NOP | SEQ_NEXT | SEQ_SYNCFULL(2) )

}, {
SUB_DSZ64_DIR(TMP0 , 1, TMP0),
UJMPCC_DIRECT_NOTTAKEN_CONDNZ_RI(TMP0 , (

PATCH_ADDR + 0x08)),
NOP,
( SEQ_UEND0(2) | SEQ_NEXT | SEQ_SYNCFULL(1) )

}, {
ZEROEXT_DSZ64_DI(R64SRC , 0x0001),
NOP,
NOP,
END_SEQWORD

}

Listing 10: URAM target
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B Setup picture

Figure 9: The hardware setup with all the components highlighted
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